MA4010NI Calculus and Linear Algebra Islington College

https%3A%2F%2Fdrive.google

  uTyE bXhooUl Ibf0lPtpMAUlOMnpr4A0tpSV8ws xAIpP US5wEJaIwAX KMLS6dpoc3RBTAmyIJwvTIcG7pRTOAofbaQw9IGGXf8tdgIA5V3gOxT9MjR3ipQnFnp wPye YO4vDEfysN 7bgryZE1stSit Problem Sheets Question Paper Year Long 2023/2024 

Module code: MA4010NI Module title: Calculus and Linear Algebra Module leader: Mr. Indra Dhakal (Islington College)
Coursework Type: Individual  Coursework Weight:This coursework accounts for 25%of your total module  grades. Submission Date: Week 4, 8, 12, 20, 24 for each 5 problem sheets. When Coursework is  Week 3 given out: Submission  Submit the following in the MST portal of your classroom Instructions: before the due date: ● A report (document) in .pdf format in the  Google Classroom or through any medium which the  module leader specifies. Warning:London Metropolitan University and Islington College  takes Plagiarism seriously. Offenders will be dealt with  sternly.

© London Metropolitan University

Page 1 of 6 

Problem Sheet 1 (5% of the module mark)[20 marks]Deadline: Week 4 

Question 1 

a) Define composite functions. 

b) It is given that ��(��) = √�� + 1 , ��(��) =1��.  

Write the formulas for �� ∘ �� and �� ∘ ��. 

c) Find the domain of each. 

d) Let ��(��) =�� 

��−2. Find a function �� = ��(��) so that (�� ∘ ��)(��) = ��. 

Question 2 

a) Consider the function  

��(��) = 

i) Find the domain of ��. 

3 + ��13− 2 �� − 1

ii) Use a graphing utility to graph the function. iii) Find lim ��→−27+��(��). 

iv) Find lim��→1��(��).

Page 2 of 6 

Problem Sheet 2 (5% of the module mark)[20 marks]Deadline: Week 8 

Question 1 

a) If ��(��) =�� 

��−1, find the derivative of �� from the first principle. 

b) i) Determine the slope of the graph of 3(��2+ ��2)2= 100���� at the point (3, 1). ii) Find ��′′ if ��2+ ��2= 25. 

Question 2 

a) Find the tangent and normal line to the graph of ��2(��2+ ��2) = ��2at the point  (√22,√22). 

b) Determine the points of inflection and discuss the concavity of the graph  ��(��) = ��4− 4��3.

Page 3 of 6 

Problem Sheet 3 (5% of the module mark) [20 marks] 

Deadline: Week 12 

Question 1 

a) Evaluate: 

√�� + 1 + √�� − 1���� 

b)Using partial fraction method integrate ∫��2+��−1 

��3+��2−6������. 

Question 2 

a) Show that 

√�� 

�� ln �� ���� =1

b) Find the area of the surface formed by revolving the graph of ��(��) = ��3on the  interval [0, 1] about �� −axis.

Page 4 of 6 

Problem Sheet 4 (5% of the module mark)(20 marks)Deadline: Week 20 

Question 1 

a) Express the complex number 5−√3�� 

1−√3��in �� + ���� form. Also, find the modulus of  

the number. 

b) Find the six sixth roots if �� = −8 and graph these roots in the complex plane. 

Question 2 

a) If the position vector of the points��, ��and��are−2��⃗+ ��⃗ − ��⃗⃗, −4��⃗ + 2��⃗ + 2��⃗⃗ and6��⃗ − 3��⃗ − 13��⃗⃗respectively.  

i) Find����⃗⃗⃗⃗⃗⃗and����⃗⃗⃗⃗⃗⃗

ii) Are����⃗⃗⃗⃗⃗⃗and����⃗⃗⃗⃗⃗⃗perpendicular? 

iii) If����⃗⃗⃗⃗⃗⃗= ������⃗⃗⃗⃗⃗⃗, then find the value of ��. 

b) Check whether the vectors ��⃗⃗ = ( 

independent.

) , ��⃗ = ( 

−4 6 

) , ��⃗⃗ = ( 

−2 8 

) are linearly  

Page 5 of 6 

Problem Sheet 5 (5% of the module mark)[20 marks] 

Deadline: Week 24 

Question 1 

Consider the system of equations  

x + 2y – 3z = 4 

3x – y + 5z = 2 

4x + y + (��2-14) z = ��+2 

a) Reduce the system to echelon form.  

b) Find the values of the constant �� that will give no solutions.  

c) Find the values of the constant �� that will give an infinite number of solutions.  d) Find the values of the constant �� that will give a unique solution.  

Question 2 

Determine a basis and dimension of the solution space of the homogeneous system ��1− 4��2− 3��3− 7��4= 0 

2��1− ��2+ ��3+ 7��4= 0 

��1+ 2��2+ 3��3+ 11��4= 0 

Express the general solution of each system as a span or using arbitrary constants.  End of paper

Page 6 of 6 

68 Comments

Leave a Reply

Your email address will not be published. Required fields are marked *